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Abstract. The Cauchy problem of the Davey—Stewartson equations with non-trivial boundaries

is studied. Initial conditions for the equations are chosen to have Gaussian-type envelope shapes,
and the time evolution is investigated both theoretically and numerically. It is found that an
initial packet grows and oscillates radiating ripples, then a localized structure called a dromion
appears asymptotically. It is also observed that the ripples run away mainly along the mean
flows. The results of numerical simulations and the analysis by the inverse scattering transform
show good agreement with each other.

1. Introduction

In recent years the Davey—Stewartsos)(1 equations [1]

igr + gux +qyy + (U +V)g=0 (1.13)
y X
U= / dy’ (Ig1). +u(x, 1) V= f dx’ (Ig1%)y +v(y, 1) (1.1b)

have attracted a good deal of interest in various physical problems. The subscripts in (1.1)
denote the partial derivatives with respect to the indicated variables. The funationg
andv(x, r) in (1.1b) are determined by the boundary conditions of the system.dhd v

are not identically zero, these equations have a solution called a dromion which localizes in
two spatial dimensions [2]. The variable hereafter called the main flow, localizes while

U andV, hereafter called the mean flows, are driven at the boundaries like one-dimensional
solitons [3]. The dromion solution comes from the interaction between the main flow and
the mean flows. Since thesi equations can be derived in many branches of physics, such
as fluid dynamics [4] or plasma physics [5], these localized structures are useful for many
practical cases.

Although studies of mathematical properties of the dromion solution have been done
intensively until the present [6], detailed research on the emergence of dromions from an
initial arbitrary wavepacket has not yet been performed. As for soliton equations in one
dimension, such as the Korteweg—de VriggV) equation and the nonlinear Sédinger

| E-mail address: knishi@dips.yz.yamagata-u.ac.jp
9 E-mail address: yajimat@mmm.t.u-tokyo.ac.jp

0305-4470/96/144237+09$19.5@C) 1996 IOP Publishing Ltd 4237



4238 K Nishinari et al

(NLS) equation, the initial-value problem is well studied by the inverse scattering transform
(1sT) [1] or numerical analyses [7]. These analyses show that solitons emerge from an
initial wavepacket emitting radiations. In these one-dimensional equations, solitons have
their origins from the zeros of scattering data, while dromions do not. Since dromions come
from the focusing effect of boundaries, the effect of boundary conditions can be considered
to play an important role in their formation.

In our previous papers [8-10] we have made detailed studies on the collision of two
single dromions and on the stability of dromions against perturbations to find that the mean
flows play an important role in controlling localized structures of the main flow. The
purpose of this paper is to investigate the initial-value problem obtfieequations under
non-trivial boundary conditions which are the same as those of the one-dromion solution.
We are going to study the emergence of dromions from Gaussian-type initial conditions by
using both thast and numerical simulations.

This paper is organized as follows. In section 2, we summarizasthef the bs1
equations and present some theoretical results concerning our problem. The numerical
results of the initial-boundary value problem are given in section 3. Comparison of the
numerical results with the result given in section 2 is considered in section 4. Concluding
discussions are given in section 5.

2. The st associated with thebs1 equations
Let us summarize thest of the Ds1 equations [6] related to the problem considered in this
paper. Equations (1.1) are associated with the Lax equation

[L1, L] = L1Ly — LoLq, = 0. (2.1)

The quantitied.; and L, are 2x 2 matrices. If we write the complex conjugateqto be
g*, they are defined as

1
8x —F=4q
L= , V2 (2.2)
— g 9.
\/2‘] y \f \/‘
o 1 O 2 0 qu V — Zq
L2—|8,+(0_1 )(3y_3x) —<_\[2q;< 0 >(8)'_ax)+<_ﬁq;_2]>'

(2.20)
First we fix the variable and consider the spectral problem
LWV =0 (2.3)
whereW is a 2x 2 matrix function. By using another matrid, we expressl as
_ =y 0Y| _ gk 0
U= M(x,y,k) exp[lk ( 0 x)} =M(x,y, k) ( 0 b |- (2.4)

We can see from (243, (2.3) and (2.4) that each element Mf satisfies

1
_ 1 :
(M5e™™), = ~ 71 ek (2.50)
. 1 .
(Mx3€e")y = ——q*M7e” (2.50)

/2
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1
<M@y=;5¢Mﬁ (2.5d)

whereM™ and M~ are analytic in the upper and lower half compleplane, respectively.
The eigenfunctiong/* are related via the scattering equations,

1) (1) = [ ereomio oo 150)
(Mjl(k) My ) =) di T (k, 1) exp[—i(lx + ky)] M) (2.6a)
MH@)_(MM@)__/w ; (MMD>
( M) M) =) di S(k, 1) explitkx + )] M) ) (2.60)
The scattering datd(k,!) and T (k, [) are given by
1 o0 o0 _ .

Sk, 1) = E me[m dy g M, (k) exp[—i(kx + Iy)] (2.7a)
and

T(k,1) =—S*(, k). (2.7)

Equations (2.6) define a non-local Riemann—Hilbert problem whose solution yigfds
terms ofS. Substituting the solution of this problem into (2.5) and taking the limit oo,
we can reconstruct the potentiglas

g(x,y) = / dk / dl S(k, 1) explitkx + Ly)]Myy(0). (2.8)

1
Vor J-
Now we consider the time development of the system. The associgid of the Lax
pair is given by (2.B). We can see from (2af thatq(x, y) is proportional to the Fourier
transform ofS(k, /), hereafter written as(x, y), in the linear limit. Then from (14) we
find that it evolves according to

iS4+ S + S, +w+v)§=0 (2.%)

where
Sx,y, 1) = Zi/ dkf di S(k, 1) explitkx + 1y)]. (2.9%)
T J -0 —0o0

Equations (2.5)—(2.9) provide thsT for the Ds1 equations. Givery(r = 0), u and v,
then (2.5) and (23) yield St = 0) and (2.9) yields S(r = 7). The solution of the
Riemann-Hilbert problem give&* and finally (2.8) gives;(z).

Assumingu andv do not depend on, i.e. u(x,t) = u(x) andv(y,t) = v(y), and
settingS(x, v,1) =T ()X (x)Y(y), we have a set of equations from (&9

T' +i(m?4+n®T =0 (2.1()
X" +u(x)X = —m?X Y +v(y)Y = —n?Y (2.10)

wherem andn are constants which give eigenvalues. The analysis of I¢?.i50closely
related to the well known spectral theory of the stationary &dinger equation. We use
X(x;m) and X;(x) to express the normalized eigenfunctions of the derivative operator in
the left-hand side of the first equation of (20)0the functionX (x; m) is the eigenfunction
which belongs to a continuous eigenvalue spectrirand X;(x) is the one belonging to
discrete eigenvalues = im;, j = 1,..., M. The eigenfunctiond (y; n), ¥;(y) and the
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eigenvalues = in,, h =1, ..., N are defined similarly. The general theory of the Sturm—
Liouville eigenvalue problem assures that these eigenfunctions form an orthonormal system.
Then the solution of (28) is given by

M N
SCoy ) =Y pinX; ()Y (y) expliom? + n)i]
j=1h=1

—i—/ dm/ dn pX (x; m)Y (y; n) expl—i(m? + n?)t]

00 M
—i—/ dm { Z piX;(x)Y (y; m) eXp[i(m_,2 —m?1]
oo P
N
4 X s ) expli — ]| 2.11)
h=1

Considering the orthogonality of the eigenfunctions, we can get the coeffigignfsom
the initial data:

P = f dr / dy $(x., y. 0)X: ()Y} () (2.12)

andp, p; and p; are given similarly [6].
The method of steepest descent implies the following asymptotic behavidundime:

M

N
S,y )~ pinX; () Yi(y) explim? + nd)i] ast — oo. (2.13)
j=1 h=1

This result plays an important role in the discussions in the following sections. isf
expressed as (2.13), we can calculatén a closed form. The solution corresponds to
the so-called M, N) ‘breather dromion’ [6]. This fact implies thatny initial conditions
generate solutions that will be breather dromions asymptotically(xf and v(y) provide
discrete eigenvalues. The initial condition only fixes the constanthrough (2.12).

3. Numerical analyses of the initial-boundary-value problem

So far we have considered the initial-boundary-value problem theoretically by usirgrthe
In order to make detailed analyses on the time evolution of the initial wavepacket, we must
investigate the initial-boundary-value problem by using numerical simulations.

First, we present the initial and the boundary conditions adopted for simulations. We
have chosen a Gaussian-type function as an initial conditiog:for

q(x,y,0) = aexpl—unx?+ y?) +i6g]. (3.1)

The parameters, . and6, are real constants. We have also defined the functiossd v
given at the boundaries as
)\2 2

u(x) v(y) (3.2

~ cosf(ux) - costt(ry)
where ) is a real parameter. These boundary conditions correspond to those of the one
dromion solution [11], i.e. the functions and v are ‘reflectionless potentials’ of (2.ap
underM = N = 1. Then the result of section 2 implies that the initial condition (3.1)
becomes one-dromion in the limit of— oo.
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1 T H k3 T ¥
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0.6 | -1
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0.2 | ~

.10 0 10 20 30 40 so Figure 1. The maximum amplitude ofy|?> when the
4 initial condition is given ag = 0.4g 005%+y)+0.1i

Figure 2. The surfaces ofg|2 at @) r = 0.0, (b) = 0.8,
(c)t=16,(d)r=9.6 and €) t = 280.

Next, we describe the numerical method briefly [9]. The computation regign p] x
[—p, p] is transformed into [027] x [0, 27] by transformationss — 7 (x+ p)/p andy —
7 (y+p)/p, and a grid has been taken &464. We takep as 15 throughout simulations. The
numerical integration of (1.1) has been performed by using the pseudospectral method with
periodic boundary condition. Time integration is performed by both the Burilsh and Store
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method and the fourth-order Runge—Kutta method with appropriate accuracy of adaptive
step size control. To prevent the reflection of the ripples due to the periodic boundaries, we
have set an absorbing area and diminish the time derivatives of the main flow. The width
of the area is a 10-point wide mesh from the boundaries of the grid, and the damping factor
increases linearly from the inner sides of the absorbing area to its boundaries [12].

We fixed the values of the parameters in (3.1) and (3.2) 2s0.8, « = 0.4, u = 0.05
anddy = 0.1. Figure 1 shows a typical aspect of time evolution of the maximum amplitude
of |¢|2, hereafter denoted by|2,,. We can observe that it increases in the initial stage, and
oscillates irregularly around a certain value in the course of time. We performed numerical
calculation until the average d2,,, becomes clear and the shape of the surfacky 6f
looks like that of one dromion. We can observe from figure 1 that the averade?is-10.54.
Some pictures of the surface [gfi?> are given in figure 2. We can see that the shaplg 3f
becomes almost the same as that of one dromion afte8. Ripples are extracted from
the initial wavepacket and they run away to infinity mainly along the mean flows.

4. Comparison of the numerical results with theisT

It is difficult to get the explicit form ofz (x, y, ) analytically when the initial condition is
given by (3.1) and the boundary conditiom&) andv(y) by (3.2). However, we can get it
in a closed form in the limit of — co. According to the discussion in section (x, y)
is given by (2.13) whem goes to infinity, and then we can show tlgais given by the sum
of the ripples and;, [6], where

2V2p1 expl—i(x + y) + 2ir%]

1p12 + [1 + exp(—22x)][1 + exp(—2iy)]” (4.2)

Goo =

We have expresseg; asp. This means that we have one dromipg asymptotically.

In order to compare the results of numerical analyses with those aEtheve must
calculatep in (4.1) from the initial condition. It is, however, difficult to get the valuef
analytically. Thus we present the efficient way of calculating the value mfimerically in
the following.

Substituting (2.3) into (2.%) and integrating with respect tg and/, we have

S(x,y) = / dk/ dx’ g (x', y)My, exp(—ikx") exp(ikx). (4.2)

1
2V 21
The integral with respect to’ in (4.2) can be performed by using (B)sand gives

Sx,y) = %/ dk A(x, v, k)| —oo XP(ikxX) (4.3)

where we have set(x, y, k) = M, exp(—ikx). We needX;(x) andY;(y) to getp, which
are eigenfunctions of (2.1) under the boundary condition (3.2). Writing*e= s, we can
find that X satisfies a equation

8s2

2
S X +85Xs+ | 55
‘ [(1+s2)2

+n~12i|X=0

wherem = m/A. This equation has a solutioki = s/(1 + s2), the only one which goes
to zero unders — 0,00 (x — +o00), whenm = i. The functionY can be derived
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similarly. By suitable normalization ok and Y, we can get discrete eigenvalues and the
eigenfunctions which belong to them:

A2 y — VA2
" cosh(ix) ~ coshAy) (4.4)
m=n=Ii\.
Substituting (4.3) and (4.4) into (2.12) and integrating with respeat toe obtain

1

P:Z

We also expresd/,,exp(—ikx) as B(x, y, k) and get a coupled system from (B)Sand
(2.5d):

oo oo k
/ dk/ dy sech(%)secr()uy)A(x,y,k)|Hoo. (4.5)

1 1
Ay =——q(x,y,00B B, = —q(x,y,00"A. 4.6
fch( ¥, 0) v szI( ¥, 0) (4.6)

The boundary conditions of and B are given by
Alyoo =0 Bly o = EXP(—ikx). 4.7)

We can calculate by using (3.1), (4.5), (4.6) and (4.7). We solve (4.6) and get the value
A(x, v, k)|x=—0 Numerically, because we cannot solve them analytically under the initial
condition (3.1). The value op obtained by the direct simulation is given in figure 3.

We have also presented the results in table 1. Considering the asymptotic pulse given by
(4.1), we can get the maximum valug,. |2, and its integral in the whole space, which is
considered to be the volume of the localized structure:

2 2|,0|2)¥2
=== 4.83
|Q|max A+ J/1+ ,02)2 ( )
/dx/dy 1g0s|? = 2In(1 4 p?). (4.80)

Here we compare the result of the valug,|2,, with that of the simulation given in

section 3. The average of the oscillatilgd?,, in figure 1 is 052 ~ 0.54, and this coincides
with the value given in table 1 when the case thathe amplitude of the Gaussian-type
initial condition of ¢, is 0.4. The results derived from thsT and the direct numerical
analysis show good agreement each other. Therefore from these facts we can infer that
the oscillation occurring ing|2,., in figure 1 subsides in the limit of large and a single

dromion appears after the radiation goes away.
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Table 1. A table of the values of amplitude of the initial conditian p, square amplitude of
the initial condition|a|2, the volume of the initial conditiorV,, the final square amplitude of
dromion |ag4|2, the volume of the final dromiof¥;, the amount of ripple®/, and the ratio of

V. againstV,.

a P |a‘2 Ve |“d|2 Va Vi Vi/ Vg

0.25 1.01654 0.0625 1.9635 0.2247 1.4194 0.5441 0.277
0.30 1.34045 0.0900 2.8274 0.3220 2.0570 0.7704 0.272
0.35 1.74258 0.1225 3.8485 0.4293 2.7908 1.0577 0.275
0.40 224753 0.1600 5.0264 0.5401 3.6006 1.4258 0.284
0.45 288671 0.2025 6.3617 0.6487 4.4671 1.8946 0.298
0.50 3.70043 0.2500 7.8538 0.7503 5.3748 2.4790 0.316
0.55 474069 0.3025 9.5033 0.8420 6.3118 3.1915 0.336
0.60 6.07487 0.3600 11.309 0.9223 7.2701 4.0389 0.357

Since the integral of (3.1) is given by

2
/dx/dy lq1? = e (4.9)
2

the amount of radiation can be calculated by subtractinggf4r®m (4.9). The values are

also shown in table 1, together with the ratio of the volume of ripples against the whole
volume of the initial wavepacket. From the values of these ratios, we can find the initial
wavepacket which is nearest to a dromion. The values listed in the final column of the
table 1 show that at the value= 0.3, the initial pulse radiates the least amount of ripple,
and this is the pulse closest to the one dromion solution. In addition, they show a tendency
that the initial pulse with larger amplitude generates more ripple.

5. Concluding discussions

In this paper, we have investigated the initial-boundary value problem afsbhequations

both numerically and theoretically. We have performed the numerical analyses in order
to clarify the process of emergence of dromions from the initial wavepacket. We have
observed that the initial wavepacket grows into a dromion asymptotically with its height
oscillating, while ripples run away into the infinity mainly along the mean flows.

If we consider the soliton equations in one dimension, like kiag and theNLS
equations, an initial condition determines the scattering data completely and the scattering
data, especially the zeros of the transmission amplitude, determine the number of solitons
in the final stage. In the case of the1 equations, however, an initial condition determines
only p, and the number of dromion to appear is determined by the eigenstates df)(2.10
under the boundary functiongx) andv(y). Generally speaking, it is difficult to calculate
o analytically when the initial condition is given like a Gaussian-type function. Hence in
this paper, we have presented the efficient way of calculating the valpenofmerically in
section 4. The results of the simulations are verified by comparing the valpebfained
by the direct simulation with the one calculated by the. We confirm that these values
are approximately the same.

Generally speaking, when we select various values as an initial amplitude of the Gaussian
wavepacket, we get different values @f This means that the volume of the final dromion
Va, which is given in (4.8), and that of the initial wavepackét, vary correspondingly.

This results in the change of the ratio of ripples contained in the initial pulse. The results of
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our analyses show that the initial packet with larger amplitude contains more ripples. This
ratio can be considered to have a close relation to the parametard ., defined in (3.1)
and (3.2). The study on this relation is a future problem.

Finally, we explain the behaviour of oscillating|2,,, shown in figure 1. As we can
see from table 1, the maximum amplitude of the final dromion is always larger than that
of the initial condition. Thus the height of the initial wavepacket will initially increase in
order to attain the final value. Next, it goes past the destined value and begins a damped
oscillation around it. This is why an ‘oscillating’ dromion with ripples appears in the course
of time. In the final stage, as predicted by thg, a single dromion appears at a cross point
of mean flows, and the ripples run away into the infinity mainly along the mean flows. This
is because the mean flows act as attractive potentials, and this behaviour was also seen in
our previous papers [8, 9].
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